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Abstract

The spectral domain-exponential matrix method

is developed to evaluate the dyadic Green’s function for

generalized anisotropic substrate-superstrate structures.

The method of moments is employed to obtain the basic

dispersive characteristics of microst,rip and inverted mi-

crostrip circuit elements on such structures. A collection

of results will be presented for the propagation constant

and characteristic impedance of microstrip elements on

generalized anisotropic layers. Emphasis will be placed

on the investigation of microstrip properties on a biased

ferrite-semiconductor interface. The modeling accounts

for arbitrarily oriented dc bias magnetic fields. The phe-

nomenon of forward and backward wave propagation on

this type of nonreciprocal structure will be highlighted.

I. Introduction

Recent technological advances in material process-

ing and circuit and device fabrication have made possi-

ble the integration of fundamentally different materials

into composite MIC structures. In particular, materials

with nonreciprocal properties (such as magnetic materi-

als) can be integrated with isotropic dielectric substrates

in planar circuits. Structures such as these can be used

to obtain nonreciprocal transmission effects such as non-

reciprocal phase shift, isolation, and circulation. A spe-

cial advantage of using magnetic substrates is that their

material parameters can be changed and to some extent

controlled by adjusting an externally applied dc magnetic

bias field. Hence, various sets of characteristics can be

obtained from one particular circuit with fixed dimen-

sions and geometry.

This research is focused on the development of

highly accurate models for microstrip and inverted mi-

crostrip lines on nonreciprocal substratt+superstrate struc-

tures. The permittivities and permeab~lties of the layers

are described as 3 x 3 tensors whose elements are com-

pletely general, so the analysis employed can be used for

structures containing layers with any type of anisotropy.

A spectral domain analysis is employed in conjunction

with matrix methods to describe the electric and mag-

netic fields in each layer of the geometry in terms of an

exponent ial matrix characteristic of its material proper-

ties. The resulting integral equation is solved rigorously

using the method of moments; hence all the pertinent

physical phenomena are taken into account.

The results presented will include dispersive prop-

ert ies of microstrip lines printed on semiconductor-ferrite

substrate-superstrate structures. The nonreciprocal be-

havior of wave propagation in these type of structures

will be demonstrated. The wide variation in propagation

characteristics as the magnetic bias field orientation is

changed will also be shown.

!d
Figure i. Microstrip transmission line in an isotropic srrbstrate/

anisotropic superstrata structure.
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II. Analysis (4)

The geometry for an infinite microstrip transmis-

sion line embedded in a grounded two-layer composite

structure with a top layer of thicknew t and a bottom

layer of thickness b is shown in Fig. 1. For nonrecip

rocal materials such as ferrite, the permeability tensor

may have nine nonzero elements depending on the ori-

entation of the dc magnetic bias field. The values of the

tensor elements are functions of operating frequency, dc

bias level, and dc bias orientation [1-2]. For example, the

permeability tensor for a ferrite whose magnetic bias is

parallel to the x-y plane (00 = 90°) is:

[

p + (V(I– p) COS2‘#O ~ sin 2+0 – jtc sin q50

~ sin 2q$o P + (Po – P) sinz 40 j~ cos #o

j~ sin #o – j~ cos #o 1p(1)

Using the 2-D Fourier transformation

in Maxwell’s curl equations and writing them in matrix

form, the fields in each region must satisfy the following

partial differential equation in Fourier transform space

[3]:

&[@)l = [4 [J(z)]+ [j’]6(z - Z’). (3)

In Eq. 3, [~] is a 4 x 1 vector containing the Fourier

transforms of the tangential E and H fields. [A] is a 4 x 4

complex matrix whose elements are completely described

by the material parameters? and ~ and the Fourier trans-

form variables kz and kg. [~] is a 4 x 1 vector containing

the Fourier transforms of any sources that might be in

the layer. The solution of Eq. 3 can be found by us-

ing the Cayley-Hamilton theorem [4] or using eigenvector

analysis [5]. The results from either method are equiv-

alent and result in terms whose z-depedences are of the

form e~iz, where Aj are the eigenvalues of the [A] m~

trix. If the medium is isotropic, there will be repeated

eigenvalues, but the terms of the exponential matrix can

be greatly simplified and exhibit .sinh and cosh behav-

ior. To find the dyadic Green’s function in any of the

regions of a layered geometry, we describe the fields in

each region i by a vector [#i] given by Eq. 3 containing

unknown constants, which can then be solved by apply-

ing the appropriate boundary conditions at each layer

interface. This solution provides the spectral Green’s

function of the pertinent problem.

To find the propagation characteristics of the mi-

crostrip line, the integral equation that needs to be solved

(assuming .*J6Z propagation) is [6]

/w [W-dl[J14/’=o
—w

on the strip (— w < y < w), where the Green’s function

G(y – y’) is in the form:

[G(y)] =/m [~(~, kg)] e-ik@ dkv. (5)
-m

The unknown current distribution is expanded as

J(% !/) = ~ L-q% Y), (6)

~. area family of Chebyshev functions. By using Galerkb’s

method, an infinite system of coupled equations is pro-

duced:

[Zmn][In] = O, m = 0,1,2, . . .. . . (7)

The propagation constants (/3) are given by the roots of

the determinant of [Z~.], corresponding to nontrivial so-

lutions of In. Once these have been found, values for [In]

can be determined, which leads to immediate knowledge

of the current distribution and quick computation of the

characteristic impedance.

111. Results

Propagation characteristics are shown for an infi-

nite transmission line printed on a structure made up of a

ferrite superstrata over an isotropic substrate. In all the

results shown, a typical ferrite with ~z = 12.6 and sat-

uration magnetization jJoM = 0.275T is assumed as the

top layer. Except for Fig. 3 (the inverted microstrip),

the substrate layer is taken as GaAs (cl = 12.9, ~1 = 1).

The strength of the dc bias field is set to a tenth of the

magnetization (UO = O.lW~), and the dimensions of the

configuration are b = t = 10 roil, and w = 2b.

The frequency behavior of the propagation con-

stant and characteristic impedance are shown in Fig. 2.

Here the bias field is oriented at 00 = #o = 90° (trans-

verse to the transmission line). Plots are shown for a

microstrip line printed at the interface between the fer-

rite and semiconductor layers (z’ = b) and for a line

printed on top of the ferrite superstrata (z’ = d). All the

curves show a similar monotonically increasing behavior,

although the curves for the dipole on top of the entire

structure exhibit noticeably more change with frequency

(~ by = 10%, Z. by N 20%). One point to note is that

the differential phase shift A~ = (~+ – /3-) also changes

with frequency.

Fig. 3 shows the frequency variation of the propa-

gation characteristics of an inverted microstrip configura-

tion (q = 1 and other parameters are the same MI those
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for Fig. 2). It is seen that in contrast to the results

shown in Fig. 2, for inverted microstrip, the propagation

constant for the backward waves is larger than that for

the forward waves.

Propagation properties for a line at the semicon-

ductor-ferrite interface at 10 GHz are plotted aa a func-

tion of bias angle in Figs. 4 and 5. In Fig. 4, the

propagation constant is plotted against 00 for different

+.. The forward and backward traveling waves have the

same constant when #o = 0° (not shown), and all curves

coincide at 00 = 0° (along the z - axis). As do approaches

90°, the difference in phase shift reaches its peak. It is

seen that the propagation constant for backward waves

decreases when the bias field angle thetq increases.

Fig. 5 shows the microstrip characteristics as a

function of +0 when 00 is held at 90°. The variation in dif-

ferential phase shift with respect to bias angle suggests a

way to ac~leve a nonreciprocal phase shifter whose phase

shifting properties are adjustable. Conversely, if the bias

angle is fixed, its phase shifting behavior could be con-

trolled by changing the frequency, as shown in Fig. 2. It

is also seen that the propagation constant and the char-

acteristic impedance are largest when the bias H field is

transverse to the microstrip.
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Figure3. Propagation constant asa function of

frequency for inverted rnicrostrip (ZI = b, El = I).
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