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Abstract

The spectral domain-exponential matrix method
is developed to evaluate the dyadic Green’s function for
generalized anisotropic substrate-superstrate structures.
The method of moments is employed to obtain the basic
dispersive characteristics of microstrip and inverted mi-
crostrip circuit elements on such structures. A collection
of results will be presented for the propagation constant
and characteristic impedance of microstrip elements on
generalized anisotropic layers. Emphasis will be placed
on the investigation of microstrip properties on a biased
ferrite-semiconductor interface. The modeling accounts
for arbitrarily oriented dc bias magnetic fields. The phe-
nomenon of forward and backward wave propagation on
this type of nonreciprocal structure will be highlighted.

1. Introduction

Recent technological advances in material process-
ing and circuit and device fabrication have made possi-
ble the integration of fundamentally different materials
into composite MIC structures. In particular, materials
with nonreciprocal properties (such as magnetic materi-
als) can be integrated with isotropic dielectric substrates
in planar circuits. Structures such as these can be used
to obtain nonreciprocal transmission effects such as non-
reciprocal phase shift, isolation, and circulation. A spe-
cial advantage of using magnetic substrates is that their
material parameters can be changed and to some extent
controlled by adjusting an externally applied dc magnetic
bias field. Hence, various sets of characteristics can be
obtained from one particular circuit with fixed dimen-
sions and geometry.

This research is focused on the development of
highly accurate models for microstrip and inverted mi-
crostrip lines on nonreciprocal substrate-superstrate struc-
tures. The permittivities and permeabilities of the layers
are described as 3 x 3 tensors whose elements are com-
pletely general, so the analysis employed can be used for
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structures containing layers with any type of anisotropy.
A spectral domain analysis is employed in conjunction
with matrix methods to describe the electric and mag-
netic fields in each layer of the geometry in terms of an
exponential matrix characteristic of its material proper-
ties. The resulting integral equation is solved rigorously
using the method of moments; hence all the pertinent
physical phenomena are taken into account.

The results presented will include dispersive prop-
erties of microstrip lines printed on semiconductor-ferrite
substrate-superstrate structures. The nonreciprocal be-
havior of wave propagation in these type of structures
will be demonstrated. The wide variation in propagation
characteristics as the magnetic bias field orientation is
changed will also be shown.
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Figure 1. Microstrip transmission line in an isotropic substrate/

anisotropic superstrate structure.
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I1. Analysis

The geometry for an infinite microstrip transmis-
sion line embedded in a grounded two-layer composite
structure with a top layer of thickness ¢ and a bottom
layer of thickness b is shown in Fig. 1. For nonrecip-
rocal materials such as ferrite, the permeability tensor
may have nine nonzero elements depending on the ori-
entation of the dc magnetic bias field. The values of the
tensor elements are functions of operating frequency, dc
bias level, and dc bias orientation [1-2]. For example, the
permeability tensor for a ferrite whose magnetic bias is
parallel to the x-y plane (8, = 90°) is:
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Using the 2-D Fourier transformation
E
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in Maxwell’s curl equations and writing them in matrix
form, the fields in each region must satisfy the following
partial differential equation in Fourier transform space
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In Eq. 3, [1,5] is a 4 X 1 vector containing the Fourier
transforms of the tangential E and H fields. [A] isa 4x 4
complex matrix whose elements are completely described
by the material parameters € and iz and the Fourier trans-
form variables k, and k. | f ] is a 4 X 1 vector containing
the Fourier transforms of any sources that might be in
the layer. The solution of Eq. 3 can be found by us-
ing the Cayley-Hamilton theorem [4] or using eigenvector
analysis [5]. The results from either method are equiv-
alent and result in terms whose z-depedences are of the
form e*i*, where A; are the eigenvalues of the [A] ma-
trix. If the medium is isotropic, there will be repeated
eigenvalues, but the terms of the exponential matrix can
be greatly simplified and exhibit sinh and cosh behav-
ior. To find the dyadic Green’s function in any of the
regions of a layered geometry, we describe the fields in
each region ¢ by a vector [¢;] given by Eq. 3 containing
unknown constants, which can then be solved by apply-
ing the appropriate boundary conditions at each layer
interface. This solution provides the spectral Green’s
function of the pertinent problem.

To find the propagation characteristics of the mi-
crostrip line, the integral equation that needs to be solved
(assuming e*7#* propagation) is [6]
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on the strip (—w < y < w), where the Green’s function
G(y —¢') is in the form:

GW=[" [66. k)] ™k, ()

The unknown current distribution is expanded as

j(x, y) = Z Injn(xa y), (6)
J, are a family of Chebyshev functions. By using Galerkin’s
method, an infinite system of coupled equations is pro-

duced:

[Zmn)[Is) =0, m =0,1,2,...... (N
The propagation constants () are given by the roots of
the determinant of [Z,,.], corresponding to nontrivial so-
lutions of I,,. Once these have been found, values for [I,]
can be determined, which leads to immediate knowledge
of the current distribution and quick computation of the
characteristic impedance.

II1. Results

Propagation characteristics are shown for an infi-
nite transmission line printed on a structure made up of a
ferrite superstrate over an isotropic substrate. In all the
results shown, a typical ferrite with ¢, = 12.6 and sat-
uration magnetization oM = 0.275T is assumed as the
top layer. Except for Fig. 3 (the inverted microstrip),
the substrate layer is taken as GaAs (¢; = 12.9, py = 1).
The strength of the dc bias field is set to a tenth of the
magnetization (wo = 0.lw.,), and the dimensions of the
configuration are b =t = 10 mil, and w = 2b.

The frequency behavior of the propagation con-
stant and characteristic impedance are shown in Fig. 2.
Here the bias field is oriented at 8y = ¢o = 90° (trans-
verse to the transmission line). Plots are shown for a
microstrip line printed at the interface between the fer-
rite and semiconductor layers (2' = b) and for a line
printed on top of the ferrite superstrate (2' = d). All the
curves show a similar monotonically increasing behavior,
although the curves for the dipole on top of the entire
structure exhibit noticeably more change with frequency
(B by = 10%, Z. by ~ 20%). One point to note is that
the differential phase shift A8 = (8, — 8_) also changes
with frequency.

Fig. 3 shows the frequency variation of the propa-
gation characteristics of an inverted microstrip configura-
tion (¢; = 1 and other parameters are the same as those



for Fig. 2). It is seen that in contrast to the results
shown in Fig. 2, for inverted microstrip, the propagation
constant for the backward waves is larger than that for
the forward waves.

Propagation properties for a line at the semicon-
ductor-ferrite interface at 10 GHz are plotted as a func-
tion of bias angle in Figs. 4 and 5. In Fig. 4, the
propagation constant is plotted against 8, for different
¢o. The forward and backward traveling waves have the
same constant when ¢, = 0° (not shown), and all curves
coincide at 8y = 0° (along the z - axis). As 0 approaches
90° , the difference in phase shift reaches its peak. It is
seen that the propagation constant for backward waves
decreases when the bias field angle thetao increases.

Fig. 5 shows the microstrip characteristics as a
function of ¢o when 6y is held at 90°. The variation in dif-
ferential phase shift with respect to bias angle suggests a
way to achieve a nonreciprocal phase shifter whose phase
shifting properties are adjustable. Conversely, if the bias
angle is fixed, its phase shifting behavior could be con-
trolled by changing the frequency, as shown in Fig. 2. It
is also seen that the propagation constant and the char-
acteristic impedance are largest when the bias H field is
transverse to the microstrip.
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Microstrip line Characteristics as a function of frequency.
{(2). Propagation constant.

(b). Characteristic impedance.



8/,

Forward (+%)

(-%)

Reverse

S.0

I[IJ.U l%.O 26.0
Frequency (GBHz)

T
25.0

30.0

Figure 3. Propagation constant as a function of

frequency for inverted microstrip (2/ = b, ¢; = 1).
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Figure 5. Propagation constant and characteristic impedance as

a function of o 8= 90°, f = 10 GHz, 1= 6.



